

The 2nd International Conference on Mathematics and Natural Sciences 2019

The state of the s

Faculty of Mathematics and Natural Sciences Universitas Pendidikan Ganesha

Certificate of Appreciation

NO: 1384/UN48.9/DL/2019

This is to certify that

Anak Agung Gede Ngurah

has participated as a *Presenter*

with a talk entitled

On Magic and Antimagic Total Labelings of Graphs

at the 2nd International Conference on Mathematics and Natural Sciences 2019

held on August 30 - 31, 2019 at Harris Sunset Road, Kuta-Bali

Denpasar, August 31, 2019

IC do MNS

International Conference on Mathematics and Natural Colynces

> Dr. I Gede Aris Gunadi,S.Si.,M.Kon Chair, Organizing Committee

Prof Dr. Nengah Suparta, M.Si
Dean, Faculty of Mathematics and Natural Sciences

On magic and antimagic total labelings of graphs

Anak Agung Gede Ngurah

Universitas Merdeka Malang, Indonesia

International Conference on Mathematics and Natural Sciences (IConMNS 2019)

Kuta - Bali, August 30 - 31, 2019

Graph Labeling

G is a finite and simple graph.

$$V(G) = \text{vertex set}; |V(G)| = p,$$

 $E(G) = \text{edge set}; |E(G)| = q.$

- ▶ A *labeling* of a graph *G* is a one to one mapping from some set of graph elements to a set of positive integers.
 - ▶ A vertex labeling $f: V(G) \rightarrow \{1, 2, 3, ..., p\}$.
 - ▶ An edge labeling $f : E(G) \rightarrow \{1, 2, 3, ..., q\}$.
 - ▶ A total labeling $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, ..., p+q\}$.

Weight

Let f be a total labeling of G.

► Vertex-weight w(v), $v \in V(G)$: Sum of label of v and labels of its incident edges;

$$w(v) = f(v) + \sum_{u \in N(v)} f(uv).$$

► Edge-weight w(e), $e = uv \in E(G)$: Sum of label of e and of labels of its endpoints;

$$w(uv) = f(u) + f(uv) + f(v).$$

Magic (Antimagic) Labeling

- Vertex-magic (vertex-antimagic) total labelings.
- ► Edge-magic (edge-antimagic) total labelings.

Edge-Magic Total Labeling

▶ An edge-magic total (EMT) labeling of a graph G with p vertices and q is a bijective function

$$f: V(G) \cup E(G) \to \{1, 2, 3, \cdots, p+q\}$$

such that $f(x) + f(xy) + f(y) = k_f$ is a constant for any edge xy of G.

- ▶ G is called an EMT graph.
- \triangleright k_f is called *magic constant* of f.

A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull., 13 (4), (1970), 451 - 461.

Super Edge-Magic Total Labeling

- An EMT labeling f of G is called a super edge-magic total (SEMT) labeling if $f(V(G)) = \{1, 2, 3, \dots, p\}$.
- G is called a SEMT graph.

H. Enomoto, A. Llado, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math., 34 (1998), 105 - 109.

Example

Figure: An EMT graph with k = 12 and a SEMT graph k = 18.

(a, d)-Edge-Antimagic Total Labeling

An (a, d)-edge-antimagic total ((a, d)-EAT) labeling of a graph G with p vertices and q edges is a bijective function

$$f: V(G) \cup E(G) \to \{1, 2, 3, \cdots, p+q\}$$

such that $\{f(x) + f(xy) + f(y) : xy \in E(G)\}$ is equal to $\{a, a+d, a+2d, \ldots, a+(q-1)d\}$, for two integers a>0 and $d\geq 0$.

ightharpoonup G is called an (a, d)-EAT graph.

R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, Proc. of Eleventh Australian Workshop on Combinatorial Algorithm, (2000), 179 - 184.

Super (a, d)-Edge-Antimagic Total Labeling

- An (a, d)-EAT labeling f is called a *super* (a, d)-EAT *labeling* if $f(V(G)) = \{1, 2, 3, ..., p\}$.
- ► G is a super (a, d)-EAT graph.

Note: when d = 0, a (super) (a, 0)-EATlabeling is in fact a (super) EMT labeling.

R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, Proc. of Eleventh Australian Workshop on Combinatorial Algorithm, (2000), 179 - 184.

Example

Figure: A super (17, 1)-EAT graph.

Necessary and Sufficient conditions

▶ A graph G is super EMT if and only if there is a bijective function $f: V(G) \longrightarrow \{1, 2, 3, ..., p\}$ such that the set $S = \{f(x) + f(y) | xy \in E(G)\}$ is a set of q consecutive integers. In this case, f can be extended to a super EMT labeling of G with magic constant p + q + min(S).

R. Figueroa-Centeno, R. Ichishima, and F. A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, *Discrete Math.*, 231 (2001), 153 – 168.

Example

Figure: A vertex labeling of a tree with $S = \{5, 6, 7, 8, 9, 10, 11\}$.

Relationships of a Super EMT Labeling with Other Labelings

- ▶ If a graph G that is a tree or where $q \ge p$ is super EMT, then G is sequential, harmonious, cordial. [1].
- Suppose that G is a super EMT bipartite graph with partite sets V_1 and V_2 and let f be a super EMT labeling of G such that $f(V_1) = \{1, 2, 3, \ldots, |V_1|\}$, then G has an α -labeling. [1].
- [1]. R. Figueroa-Centeno, R. Ichishima, and F. A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, *Discrete Math.*, 231 (2001), 153 168.
- [2]. J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., DS6 (2018) http://www.combinatorics.org.

Relationships of a Super EMT Labeling with Other Labelings

- ▶ Let G be a graph which admits total labeling and whose edge labels an arithmetic progression with difference d. Then the following are equivalent.
 - (i). G has an EMT labeling with magic constant k.
 - (ii). G has a (k (q 1)d, 2d)-EAT labeling.

As a consequence of this result:

▶ If G has a super EMT labeling with magic constant k, then G has a super (k - q + 1, 2)-EAT labeling.

M. Baca, Y. Lin, M. Miller, and R. Simanjuntak, New contructions of magic and antimagic graph labelings, Util. Math., 60, (2001), 229 - 239.

Results

(AAGN, 2019++) Let G be a super EMT graph with magic constant k.

- (1). If q is odd, then G is a super $(\alpha, 1)$ -EAT graph, where $\alpha = k \frac{1}{2}(q 1)$.
- (2). If q = p 1 or q = p, then G is an $(\alpha, 4)$ -EAT graph, where $\alpha = 2k 2(p + q)$, such that all vertices receive the odd labels.
- (3). If q = p 1 or q = p and q is odd, then G is an $(\alpha, 2)$ -EAT graph, where $\alpha = 2k (2p + q + 1)$, such that all vertices receive the odd labels.
- (4). If q = p, then G is an $(\alpha, 4)$ -EAT graph, where $\alpha = 2k 2(p+q) + 1$, such that all vertices receive the even labels.

Example

Figure: (a). A super EMT labeling of C_5 . (b). A super (12, 1)-EAT labeling of C_5 . (c). An (8, 4)-EAT labeling of C_5 . (d). An (12, 2)-EAT labeling of C_5 . (e). An (9, 4)-EAT labeling of C_5 .

Results; 2-regular Graphs

Holden et al. proved that,

- ▶ $C_5 \cup (2t)C_3$ is SEMT for each integer $t \ge 3$.
- ▶ $C_4 \cup (2t-1)C_3$ is SEMT for each integer $t \ge 3$.
- ▶ $C_7 \cup (2t)C_3$ is SEMT for each integer $t \ge 1$.
- ▶ Conjectured : All 2-regular graphs of odd order are SEMT, excluding $C_3 \cup C_4$, $3C_3 \cup C_4$ and $2C_3 \cup C_5$.
- J. Holden, D. McQuillan, and J. M. McQuillan, A conjecture on strong magic labelings of 2-regular graphs, Discrete Math., 312, (2009), 4130–4136.

Results; 2-regular Graphs

(AAGN, 2019++) All the following graphs are super $(\alpha', 1)$ -EAT graphs, $(\alpha'', 2)$ -EAT graphs, and $(\alpha''', 4)$ -EAT graphs, for some integers α', α'' and α''' .

- ▶ $C_5 \cup (2t)C_3$ is SEMT for each integer $t \ge 3$.
- ▶ $C_4 \cup (2t-1)C_3$ is SEMT for each integer $t \ge 3$.
- ▶ $C_7 \cup (2t)C_3$ is SEMT for each integer $t \ge 1$.

Results: 2-regular Graphs

Figueroa-Centeno et al. proved that:

- ▶ $C_3 \cup C_n$ is SEMT iff $n \ge 6$ and n is even.
- ▶ $C_4 \cup C_n$ is SEMT iff $n \ge 5$ and n is odd.
- ▶ $C_5 \cup C_n$ is SEMT iff $n \ge 4$ and n is even.
- ▶ $C_n \cup C_m$ is SEMT if n is even and $m \ge \frac{n}{2} + 1$ is odd.
- R. M. Figueroa-Centeno, R. Ichishima, and F. A. Muntaner-Batle, A magical approach to some labeling conjectures, *Discuss. Math. Graph Theory*, **31**, (2011), 79–113.

Results: 2-regular Graphs

(AAGN, 2019++) All the following graphs are super $(\alpha', 1)$ -EAT graphs, $(\alpha'', 2)$ -EAT graphs, and $(\alpha''', 4)$ -EAT graphs, for some integers α', α'' and α''' .

- ▶ $C_3 \cup C_n$ is SEMT iff $n \ge 6$ and n is even.
- ▶ $C_4 \cup C_n$ is SEMT iff $n \ge 5$ and n is odd.
- ▶ $C_5 \cup C_n$ is SEMT iff $n \ge 4$ and n is even.
- ▶ $C_n \cup C_m$ is SEMT if n is even and $m \ge \frac{n}{2} + 1$ is odd.

Results: 2-regular graphs

(AAGN, 2019++) If $m, t \ge 3$, $n \ge 4$, and $l \ge 6$ are positive integers such that m and t are odd and $l \equiv 2 \pmod{4}$, then all the following graphs are super EMT.

- a). $m[C_{nt} \cup C_t]$ for $n \equiv 0 \pmod{2}$.
- b). $m[C_{nt} \cup 2C_t]$ for $n \equiv 1 \pmod{2}$.
- c). $m[C_{4t} \cup C_{nt} \cup C_t]$ for $n \equiv 0 \pmod{4}$.
- d). $m[C_{4t} \cup C_{nt} \cup C_t]$ for $n \in \{6, 10, 14, 18, 22, 26\}$.
- e). $IC_{4t} \cup m[C_{nt} \cup C_t]$ for $n \equiv 8, 12 \pmod{16}$.

Results: 2-regular graphs

(AAGN, 2019++) If $m, t \geq 3$, $n \geq 4$, and $l \geq 6$ are positive integers such that m and t are odd and $l \equiv 2 \pmod{4}$, then all the following graphs are super $(\alpha', 1)$ -EAT graphs, $(\alpha'', 2)$ -EAT graphs, and $(\alpha''', 4)$ -EAT graphs, for some integers α', α'' and α''' .

- a). $m[C_{nt} \cup C_t]$ for $n \equiv 0 \pmod{2}$.
- b). $m[C_{nt} \cup 2C_t]$ for $n \equiv 1 \pmod{2}$.
- c). $m[C_{4t} \cup C_{nt} \cup C_t]$ for $n \equiv 0 \pmod{4}$.
- d). $m[C_{4t} \cup C_{nt} \cup C_t]$ for $n \in \{6, 10, 14, 18, 22, 26\}$.
- e). $IC_{4t} \cup m[C_{nt} \cup C_t]$ for $n \equiv 8, 12 \pmod{16}$.

Results: 2-regular Graphs

- ▶ Let m be an odd integer. If $G \cong \bigcup_{i=1}^k C_{n_i}$ is super EMT, then $H \cong \bigcup_{i=1}^k (m, n_i) C_{[m,n_i]}$ is super EMT, where
 - (a, b) is the greatest common divisor of a and b,
 - [a, b] is the least common multiple of a and b.

R. Ichishima, F. A. Muntaner-Batle, and A. Oshima, Enlarging the classes of super edge-magic 2-regular graphs, AKCE Int. J. Graphs Comb., 10 (2), (2013), 129–146.

Results: 2-regular Graphs

(AAGN, 2019++) Let m be an odd integer. If $G \cong \bigcup_{i=1}^k C_{n_i}$ is super EMT, then $H \cong \bigcup_{i=1}^k (m,n_i)C_{[m,n_i]}$ is a super $(\alpha',1)$ -EAT graph, an $(\alpha'',2)$ -EAT graph, and an $(\alpha''',4)$ -EAT graph, for some integers α',α'' and α''' .

- (a, b) is the greatest common divisor of a and b,
- [a, b] is the least common multiple of a and b.

Results: Trees

Let $K_{n_1}, K_{n_2}, \ldots, K_{n_t}$, be a family of disjoint stars. Let v_i be a pendant vertex of G_i , $1 \le i \le t$. The tree which contains all the t stars and a path joining v_1, v_2, \ldots, v_t is called a *firecracker* and it is denoted by $FC(n_1, n_2, \ldots, n_t)$.

- ► FC $(n_1, n_2, ..., n_t)$ is a super EMT graph, if $n_1 = n_2 = ... = n_t$. [1]
- ► FC $(n_1, n_2, ..., n_t)$ is a super EMT graph, if $n_1 \le n_2 \le ... \le n_t$. [2]
- [1]. V. Swaminathana and P. Jeyanthi, Super edge-magic strength of fire crackers, banana trees and unicyclic graphs, Discrete Math., 306 (14) (2018), 1624 1636.
- [2]. E. T. Baskoro, R. Simanjuntak, S. Uttunggadewa, and AAGN On super edge-magic strength and deficiency of graphs, LNCS, 4535 (2008), 144 154.

Results: Trees

(AAGN, 2019++)

- ▶ If $n_2 \le n_3 \ldots \le n_t$ and $n_i = n_{2t+1-i}$, $2 \le i \le t$, then $FC(n_1, n_2, \ldots, n_{2t})$ is a super EMT graph.
- If $n_2 \leq n_3 \ldots \leq n_t$ and $n_i = n_{2t+1-i}$, $2 \leq i \leq t$, then $FC(n_1, n_2, \ldots, n_{2t})$ is a super $(\alpha', 1)$ -EAT graph, an $(\alpha'', 2)$ -EAT graph, and an $(\alpha''', 4)$ -EAT graph, for some integers α', α'' and α''' .

Example

Figure: A vertex labeling of FC(4, 2, 3, 3, 2, 5).

Results: Trees

The *corona product* of G and nK_1 , $G \odot nK_1$, is a graph obtained by attaching n isolated vertices to each vertex of G.

T(n, m), $n \ge 2$ and $m \ge 1$, is a tree constructed from a caterpillar $P_n \odot 2K_1$ by inserting m vertices to every pendant of $P_n \odot 2K_1$.

(AAGN, 2019++)

- For every $n \ge 2$ and $m \ge 1$, $\mathsf{T}(\mathsf{n}, \mathsf{m})$ is a super EMT graph.
- ▶ For every $n \ge 2$ and $m \ge 1$, $\mathsf{T}(\mathsf{n}, \mathsf{m})$ is a super $(\alpha', 1)$ -EAT graph, an $(\alpha'', 2)$ -EAT graph, and an $(\alpha''', 4)$ -EAT graph, for some integers α', α'' and α''' .

Example

Figure: A vertex labeling of T(6,2).

Results: Unicyclic graphs

- ▶ [1]. Let m, n and t be positive integers such that $m, n \ge 3$ are odd. Then $m(C_n \odot tK_1)$ is a super EMT graph.
- ▶ (AAGN, 2019++) Let m, n and t be positive integers such that $m, n \geq 3$ are odd. Then $m(C_n \odot tK_1)$ is a super $(\alpha', 1)$ -EAT graph, an $(\alpha'', 2)$ -EAT graph, and $(\alpha'', 4)$ -EAT graph, for some integers α', α'' and α''' .
- [1]. J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., DS6 (2018) http://www.combinatorics.org.

References

- ▶ J.A. Gallian, A dinamic survey of graph labelings, *Electron. J. Combin.*, **16** (2018) # DS6.
- ► A. M. Marr and W. D. Wallis, Magic Graphs, 2nd, Birkhäuser, Boston, 2013.
- M. Baća and M. Miller, Super Edge-Antimagic Graphs, Brown
 Walker Press, Boca Raton, 2008.

THANK YOU FOR YOUR ATTENTION