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Abstract. Chili (Capsicum annuum L.) is the source of various nutraceutical small molecules, 

such as ascorbic acid (vitamin C), carotenoids, tocopherols, flavonoids, and capsinoids. The 

purpose of this study was to classify the maturity stage of large green chili into three maturity 

levels, i.e. maturity 1 (maturity index 1 / 34 days after anthesis (DAA)), maturity 2 (maturity 

index 3 / 47 DAA), and maturity 3 (maturity index 5 / 60 DAA) by using convolutional neural 

networks (CNN) based deep learning and computer vision. Four types of pre-trained networks 

CNN were used in this study i.e.SqueezeNet, GoogLeNet, ResNet50, and AlexNet. From the 

overall sensitivity analysis results, the highest maturity classification accuracy of large green 

chili was 93.89% which can be achieved when using GoogLeNet with SGDmoptimizer and 

learning rate of 0.00005. However, in further testing using testing-set data, the highest 

classification accuracy based on confusion matrix was reaching 91.27% when using the CNN 

SqueezeNet model with RMSProp optimizer and a learning rate of 0.0001. The combination of 

the CNN model and the low-cost digital commercial camera can later be used to detect the 

maturity of large green chili with the advantages of being non-destructive, rapid, accurate, low-

cost, and real-time. 

1. Introduction 

Chili (Capsicum annuum L.) is the source of various nutraceutical small molecules, such as ascorbic 

acid (vitamin C), carotenoids, tocopherols, flavonoids, and capsinoids [1]. Chili is rich in bioactive 

contents such as carotenoids (β-carotene and β-cryptoxanthin), capsaicinoids, flavonoids, and 

micronutrients, such as phenolic compounds and vitamin C with antioxidant properties. The content of 

these compounds is influenced by several factors i.e. hybrid varieties, maturity levels at harvest, climatic 

conditions, and treatment of storage and processing of chili [2]. Large green chili has a higher vitamin 

C content than other types of chili. One factor that can affect the content of vitamin C in chili is the level 

of maturity. The level of maturity of chili can be seen from color changes, and color will affect quality. 
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The higher the maturity index of the chili, the more intense the color of the chili so that the nutritional 

content and quality of the chili will be higher. Chili at a higher maturity level has a higher vitamin C 

content compared to chili at a low level of maturity. Increased accumulation of ascorbic acid or vitamin 

C in chili is associated with an increase in chili shelf life and improved post-harvest chili quality [3]. 

In general, chili has nine maturity indices [4], where differences in each index can be seen based on 

increasingly mature color changes as shown in Figure 1. Each maturity index has characteristics as 

follows: Index 1 light yellowish green; Index 2 bright and shiny green; Index 3 bright green, shiny, and 

slippery; Index 4 dark green, glistening, and slippery; Index 5 dark green or blackish and shiny green; 

Index 6 green mixed with red, shiny, and waxy; Index 7 dominant colored red mixed with green, slightly 

shiny, very slippery; Index 8 the dominant colored is red and there is a slight green or overall bright red 

color, shiny, and slippery; Index 9 overall dark red or blackish red, slightly shiny, and slippery. 

 

Figure 1. Chili maturity index. 

Hendrawan et al. [5-8] have proven the effectiveness of computer vision in the classification and 

identification of agricultural products with various advantages including precision, rapid, non-

destructive, real-time, and low-cost. Convolutional neural networks (CNN) can improve the 

performance of computer vision in classifying and identifying agricultural products. Parvathi and Selvi 

[9] have proven CNN's excellence in using the ResNet50 pre-trained network for detecting coconut 

maturity from real-time images on farms with an accuracy rate of up to 99%. Behera et al. [10] have 

successfully identified and classified papaya fruits using CNN with several pre-trained networks such 

as ResNet101, ResNet50, ResNet18, VGG19, VGG16, GoogLeNet, and AlexNet. The accuracy results 

are also very good because the CNN models have managed to achieve 100% accuracy. Ismail and Malik 

[11] have developed research to grading apples and bananas at several maturity levels using several 

CNN pre-trained network models i.e.ResNet, DenseNet, MobileNetV2, NASNet, and EfficientNet. The 

results show a high accuracy value of 96.7% for apples and 93.8% for bananas. This shows the efficacy 

of the CNN model that has been developed. Nasiri et al. [12] in their research sorted dates into several 

classifications of maturity using the CNN model with VGG-16 architecture. The result shows good 

accuracy of 96.98%. Wan and Goudos [13] have succeeded in classifying several fruits such as apples, 

oranges, and mangoes into several ripeness categories using the CNN model. The highest accuracy for 

apples was 92.51%, while oranges were 90.73%, and mangoes were 88.94%.In another study, Ni et al. 

[14] also proved the effectiveness of CNN in identifying the ripeness of berries with high accuracy of 

97.3%. The reliability of CNN in identifying fruit maturity was also demonstrated in the study of 

Habaragamuwa et al. [15] who have succeeded in classifying strawberries (mature and immature) using 

a deep convolutional neural network (DCNN). The accuracy achieved in this study reached 88.03%. 

However, from various studies on computer vision and CNN in modeling the maturity of agricultural 

products, there are no studies that have examined the benefits of computer vision and CNN in classifying 

and identifying large green chili maturity. This study aims to classify the maturity stage of large green 

chili into three maturity levels, i.e. maturity 1 (maturity index 1 / 34 days after anthesis (DAA)), maturity 

2 (maturity index 3 / 47 DAA), and maturity 3 (maturity index 5 / 60 DAA) by using CNN and computer 

vision. The level of maturity of this chili is based on the research of Hendrawan et al. [16] as a basis for 

classification. 
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2. Materials and methods 

In this study, large green chilies were harvested from chili plantations in Tawang Argo Village, 

KarangPloso District, Malang, Indonesia. Maturity 1 was harvested at 34 DAA, maturity 2 was 

harvested at 47 DAA, while maturity 3 was harvested at 60 DAA. This study used a low-cost digital 

commercial camera to collect large green chili image data. The image acquisition process was carried 

out using a closed black box with evenly distributed lighting over the surface of the large green chili 

object. The light was provided by two 22W lamps (EFD25N/22, National Corporation, Japan). Light 

intensity over the object surface was uniform at 300 lux in the center of the region during image 

acquisition.A low-cost digital commercial camera (Logitech C270 HD camera 3-megapixel snapshots) 

was used for image acquisition with a distance of 300 mm from the camera to the object's surface. From 

the image acquisition process, the image was obtained with a resolution of 300 × 300 pixels in JPEG 

format. The augmentation process of image data is carried out to increase the amount of data.Each level 

of maturity used a sample of 100 chilies. After the augmentation stage, 400 chili image data were 

obtained for the training and validation process. Then at each level of maturity, 20 more chili samples 

were taken, which after augmentation became 80 image data for the testing process. A total of 1200 

image data with three maturity categoriesi.e.maturity 1, maturity 2, and maturity 3 were used as training 

and validation data. Image data wasdivided into two parts i.e. 70% for training data and 30% for 

validation data.  

Figure 2 shows an example of large green chili with maturity 1, maturity 2, and maturity 3. Large 

green chili in each maturity class looks almost the same and is difficult to distinguish by observations 

from external appearances. The deep learning method was used to model image data in categorizing the 

quality of large green chili. Four types of CNN pre-trained networks were used in this 

studyi.e.SqueezeNet, GoogLeNet, ResNet50, and AlexNet. The CNN SqueezeNet algorithm was 

described in the research of Ucar and Korkmaz [17], GoogLeNet in the study of Raikar et al. [18], 

ResNet50 in the study of Mkonyi et al. [19], and AlexNet on Jiang et al. [20].  

 

   
(a) (b) (c) 

Figure 2. 300×300 pixels image of large green chili in different maturity levels: a) 

maturity 1; b) maturity 2; c) maturity 3. 

 

Figure 3. Structure of CNN model to classify large green chili maturity. 

 

The CNN structure for classifying large green chili maturity, in general, can be seen in Figure 3. 

Some of the parameters that were set on each CNN pre-trained included: optimizer (SGDm, Adam, 
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RMSProp) [21], initial learning rate (0.00005 and 0.0001) [22], epoch 20, minibatch size 20 [23], 

sequence padding value = 0, sequence padding direction = right, L2Regularization = 0.00001, learning 

rate drop factor = 0.1, learning rate drop period = 10, and momentum = 0.9. After the CNN modeling 

process had been carried out, the best model was tested on 80 data sets in each quality category. The 

testing data set was image data of large green chili taken separately from training and validation data. 

The performance of the CNN model was measured from the classification accuracy of the testing-set 

data using the confusion matrix method [24]. 

3. Results and discussion 

The performance of CNN's pre-trained network can be seen in Table 1. Four models of the pre-trained 

network were used to classify the maturity of large green chili i.e.AlexNet, GoogLeNet, ResNet50, and 

SqueezeNet. Sensitivity analysis was carried out by varying the optimizer method i.e.SGDm, Adam, 

and RMSProp, and varying the initial learning rates of 0.00005 and 0.0001. Based on the obtained 

results, it showed that the four pre-trained networks CNN models produced different classification 

accuracy with an accuracy ranging from the lowest 82.22% to the highest 93.89%. 

 

Table 1. Performance of pre-trained network CNN to classify large green chili maturity. 

Architecture Optimizer Learning rate Accuracy (%) Time (minutes) 

AlexNet SGDm 0.00005 92.22 78 

 Adam 0.00005 86.11 78 

 RMSProp 0.00005 86.39 78 

 SGDm 0.0001 86.94 75 

 Adam 0.0001 83.61 78 

 RMSProp 0.0001 82.22 84 

GoogLeNet SGDm 0.00005 93.89 181 

 Adam 0.00005 91.94 149 

 RMSProp 0.00005 88.89 148 

 SGDm 0.0001 87.78 148 

 Adam 0.0001 93.89 149 

 RMSProp 0.0001 89.72 149 

ResNet50 SGDm 0.00005 90.83 350 

 Adam 0.00005 90.56 341 

 RMSProp 0.00005 89.72 369 

 SGDm 0.0001 91.39 357 

 Adam 0.0001 93.06 358 

 RMSProp 0.0001 88.61 374 

SqueezeNet SGDm 0.00005 87.78 83 

 Adam 0.00005 91.11 79 

 RMSProp 0.00005 88.61 80 

 SGDm 0.0001 86.94 80 

 Adam 0.0001 87.22 78 

 RMSProp 0.0001 92.78 79 

 

Overall, based on the value of the initial learning rate, it was proven that the learning rate of 0.00005 

produced a higher average classification accuracy of 89.84% compared to the learning rate of 0.0001 

which resulted in an average classification accuracy of 88.68%. Based on CNN's pre-trained network 

architecture, the GoogLeNet model had the highest average classification of 91.01% followed by 

ResNet50, Squeezenet, and AlexNet with average classification accuracy values of 90.69%, 89.07%, 

and 86.25%, respectively. These results are in line with research conducted by Li et al. [25] which 

proved the performance effectiveness of GoogLeNet for classification. However, Table 1 also shows 
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the weakness of ResNet50 and GoogLeNet is that the training process required was very long with an 

average learning time of 358 minutes for ResNet50 and 154 minutes for GoogLeNet. The fastest learning 

process was achieved when using the CNN AlexNet model, which was about 78.5 minutes. Based on 

the optimizer method used, it was proven that SGDm produced the highest average classification 

accuracy of 89.72% compared to Adam and RMSProp which had an average classification accuracy of 

89.68% and 88.36%, respectively. From the overall results of sensitivity analysis, the highest 

classification accuracy was 93.89% which can be achieved when using GoogLeNet with SGDm 

optimizer and learning rate 0.00005. 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 4. Performance of CNN to classify large green chili maturity using pre-trained network: (a) 

GoogLeNet (optimizer = SGDm, learning rate = 0.00005); (b) GoogLeNet (optimizer = Adam, 

learning rate = 0.0001); (c) ResNet50 (optimizer = Adam, learning rate = 0.0001); (d) SqueezeNet 

(optimizer = RMSProp, learning rate = 0.0001); (e) AlexNet (optimizer = SGDm, learning rate = 0. 

00005). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5. Performance of testing-set data using a confusion matrix: (a) GoogLeNet (optimizer = 

SGDm, learning rate = 0.00005); (b) GoogLeNet (optimizer = Adam, learning rate = 0.0001); (c) 

ResNet50 (optimizer = Adam, learning rate = 0.0001); (d) SqueezeNet (optimizer = RMSProp, 

learning rate = 0.0001); (e) AlexNet (optimizer = SGDm, learning rate = 0. 00005). 

The training process in the five best CNN models can be seen in Figure 4. From Figure 4,all CNN 

models showed an effective training process performance where the accuracy value increased with 

increasing iteration[26]. The opposite applied to the loss value, where the loss value decreased with 
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increasing iteration. Almost the same patterns were shown by the five best CNN models. The training 

and validation performance chart patterns appeared to move quickly at the initial epoch and converged 

at the next epoch where the accuracy value moved increasingly converging to a value close to 100% and 

the loss value converged closer to the value 0. The validation value, both accuracy, and loss moved 

according to the training value. In terms of the stability of the learning process, it can be seen in Figure 

4 that GoogLeNet with Adam optimizer and learning rate of 0.0001 showed a fairly stable training and 

validation process compared to other CNN models. 

After the best results were obtained in the training and validation process, the next step was testing 

the performance of the CNN model using the testing-set data. Of the five best CNN models when tested 

using the testing-set data, they all produced the same performance, the same accuracy value, and the 

same error value [26]. So that for the confusion matrix in this study, one confusion matrix result was 

shown representative of the best five CNN models. The results of the confusion matrix can be seen in 

Figure 5. From the results of the confusion matrix, it appeared that the highest average accuracy of the 

testing-set data was 91.27% achieved by SqueezeNet with RMSProp optimizer and learning rate 0.0001, 

where this accuracy value was very high for classifying the maturity of large green chili. In the large 

green chili class of maturity 3, the CNN model was able to accurately calculate 100% without the 

slightest error. While in the maturity 1 and maturity 2 class, the CNN model made an error of 12.2% 

and 25.74%, respectively, and was still able to classify the maturity 1 and maturity 2 class with an 

accuracy of 87.80% and 74.26%, respectively. With this accuracy result, it can be concluded that the 

CNN model that had been built can work effectively to classify large green chili into maturity 1, maturity 

2, and maturity 3 classes. In future work, the combination of the CNN model and the low-cost digital 

commercial camera can be used to detect the maturity of large green chili with the advantages of being 

non-destructive, rapid, accurate, low-cost, and real-time. 

4. Conclusions 

The maturity of large green chiliwas divided into three classes i.e. maturity 1 (maturity index 1 / 34 days 

after anthesis (DAA)), maturity 2 (maturity index 3 / 47 DAA), and maturity 3 (maturity index 5 / 60 

DAA). CNN's pre-trained network models used in this study included AlexNet, GoogLeNet, ResNet50, 

and SqueezeNet. The research results showed very high accuracy in the training and validation process. 

Fivebest CNN models i.e. GoogLeNet (optimizer = SGDm, learning rate = 0.00005); GoogLeNet 

(optimizer = Adam, learning rate = 0.0001); ResNet50 (optimizer = Adam, learning rate = 

0.0001); SqueezeNet (optimizer = RMSProp, learning rate = 0.0001); AlexNet (optimizer = 

SGDm, learning rate = 0. 00005)were able to achieve training and validation accuracy up to 93.89%. 

In further testing using the testing-set data, the highest classification accuracy based on the confusion 

matrix was reaching 91.27%. The combination of the CNN model and the low-cost digital commercial 

camera can later be used to detect the maturity of large green chiliwith the advantages of being non-

destructive, rapid, accurate, low-cost, and real-time. 
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